ARTÍCULO ORIGINAL - COLABORACIÓN ESPECIAL

Determination of the teachers’ workload in the framework of the EHEA

Antonio García Pino
agpino@uvigo.es
Universidade de Vigo

ABSTRACT. This paper describes a quantitative model to determine the required faculty human resources for developing higher education degree. The parameters that intervene in the model are thus presented and discussed. There are two kinds of parameters: a) academic features such as duration of studies, number of students entering each year, graduation, dropout and efficiency rates, etc. b) parameters derived from regulations. The model is based on the stability of some of the academic parameters in a long period. A mathematical development leads to a practical formulation to predict the number of students enrolled, the number of credits inscribed and the number of faculty hours required. Some approximations on the results are also suggested in order to achieve very simple formulas which are useful for the bodies of government of the universities.

KEY WORDS. Faculty Members, Graduate, Dropout, Curriculum, Human Resources

1. INTRODUCTION

The European Credit Transfer System, ECTS (European Commission, 2004) allows quantifying the student effort in the European
Higher Education Area, EHEA (Tovar, 2007). By definition, each ECTS involves between 25 and 30 hours of work by the students. These hours include both those developed in classroom or laboratory under the direct intervention of teachers, and the autonomous activity by the student. In annual average values, students take 60 credits a year, representing between 1,500 and 1,800 hours of academic activity. However, there is not a direct measure that relates the credits taken by students with the effort that represents in hours of work by the teaching staff. The workload of teachers is a crucial element from the economic point of view because an important part of higher education costs is dedicated to maintain its human resources.

The number of teachers which is necessary in the long term for developing high education studies depends on different parameters that can be classified as follows:

- Academic features such as the duration of the program, the number of students entering every year, graduation, dropout and efficiency rates, etc.

- Parameters derived from regulations. Some of them allow intervening on the quality of higher education, for instance the average size of the groups in the different activities, and the percentage of contact hours for students in the ECTS. Other parameters can derive from education and labor law, such as the number of hours available annually by the faculty for the exercise of the teaching activities.

A mathematical and quantitative model is presented in this paper in order to predict the workload of educators and, consequently, the dimension of the faculty staff, given a set of simple parameters which can be considered stable for a period of several years. The model will be illustrated with some examples and it can be considered a useful tool for the bodies of government of the universities with responsibility in establishing adequate dimensions for the educational human resources. Since the input parameters are supposed to evolve slowly, the model allows for planning the necessary evolution of these human resources.

A similar objective model was previously presented (Garcia Pino, 2012), but it had certain restrictions on the parameters that were handled. In the formulation presented here, the model is widespread. Besides, a parametric study has been developed which demonstrates the robustness of the model.

2 ACADEMIC PARAMETERS OF THE MODEL

The academic parameters are related to the transit of students along the different levels or years of the studies that constitute the curriculum of the university degree. The mathematical model which is proposed in this work assumes that these parameters are stable in a long term period of several years. Practically, this means that the value of the parameters that must incorporated in the model should be obtained statistically as the mean values computed in a fixed long term period. Some of the parameters act as input parameters obtained directly from such statistics while others are established by the model with the formulation that is described in the following lines.

2.1. Number of students entering studies (N)

The number of students entering the first year of the degree for the first time is denoted by N and is considered an input parameter obtained from the historical records of the degree. The students entering the program in levels/years higher than the first, coming from other program of studies, are not included in this parameter. This number is the most important one in the process because it is linked to the existing social demand of the degree and is directly related to the teachers’ workload. If a percentage of the students have part-time status, the parameter N must be computed in this model as the equivalent number of full time-students.

2.2. Number of years (N_y) and credits (N_c) of the studies

A study program or degree consists of a number of ECTS credits (N_c) that must be overcome by the students to achieve the degree. Those credits are distributed along a number of
When part of the credits of the curriculum does not require regular classes with the presence of teachers, that part can be also computed for this model in order to consider the input of students in levels/years higher than the first one. The mathematical model will be illustrated here with an example for the undergraduate degree called “Grado” in Spanish regulations (Spanish regulation RD 1393, 2007), which consists of a 4-year program with 240 ECTS.

2.3. Graduation rate (Tg) and dropout or abandon rate (Ta)

2.3.1 Mathematical model for the dropout rate

According to Spanish regulations (Spanish regulation RD 1393, 2007), the dropout rate (Tinto, 1975; Cabrera, 2006) is defined as the percentage of students (relative to their cohort of new income) that must have obtained the degree in the previous academic year but have not been enrolled or graduated in that academic year or in the previous one. This is a statistical input parameter of the model. A more detailed description of the dropout, year by year, is useful for the purposes of this work. The percentage of students graduated after j years will be denoted by Tg^(j), with j≥Ny. According the definition, the official graduation rate is the sum of the first two terms of the series. The percentage of students graduated in the year Ny is denoted here by (1-y)Tg with 0≤y≤1 while those graduated in the year Ny+1 are given by the

\[T_a = \sum_{i=0}^{\infty} T_a^{(i)} = (T_a + t_a) \sum_{i=0}^{\infty} a_i \]

where \(a_i \) is the probability of abandon in the year \(i \), which is a statistical variable, usually decreasing, with a mean value \(\alpha \). The following relations must be satisfied:

\[\sum_{i=0}^{\infty} a_i = 1 \quad ; \quad \sum_{i=0}^{\infty} i a_i = \alpha \]

The dropout rates defined as \(T_a \) and \(t_a \) can be written with this model as:

\[T_a^{(i+1)} = (T_a + t_a)a_i \quad (i \geq 0) \]

2.3.2 Mathematical model for the graduation rate

The graduation rate (Van Den Berg, 2005) in the Spanish regulation (Spanish regulation RD 1393, 2007) is the percentage of students relative to their cohort of new income that complete their degree in Ny or Ny+1 years. This is also a statistical input parameter of the model. A more detailed description of the graduation of students, year by year, is useful for the purposes of this work. The percentage of students graduated after j years will be denoted by Tg^(j), with j≥Ny. According the definition, the official graduation rate is the sum of the first two terms of the series. The percentage of students graduated in the year Ny is denoted here by (1-y)Tg with 0≤y≤1 while those graduated in the year Ny+1 are given by the
percentage \(yT_g \). A decreasing behavior, statistically characterized, is now assumed starting on the second term. Besides, \(t_g \) will represent the late graduation rate, which is the percentage of students graduating after \(N_g+2 \) or more years. The decreasing series starts at the second term and its sum equals \(yT_g + t_g \). The following formulation is then adopted:

\[
T_g^{(N_y)} = (1 - y)T_g \quad ; \quad T_g^{(N_y + j)} = [yT_g + t_g]g_j \quad (j \geq 0)
\]

where \(g_j \) are the point probabilities corresponding to each year for the statistical distribution of graduation rates. Denoting by \(\gamma \) to the mean value of the distribution, the following relations must be satisfied:

\[
\sum_{j=0}^{\infty} g_j = 1 \quad ; \quad \sum_{j=0}^{\infty} jg_j = \gamma
\]

(5)

2.3.3 Example of graduation and dropout rates with geometrical decreasing distributions

The discrete probability distribution of geometric type is suitable for statistical modeling of dropout rates and graduation. Firstly, decreasing probabilities result when increasing the current year. This is consistent with the fact that, after a certain point in time, both leaving and graduated students within the same promotion will be reduced year after year. Second, it is a distribution characterized by only one single parameter. This fact contributes to simplify the mathematical formulation. In appendix section A.1 the details of the mathematical formulation used can be found, while throughout the text the model of academic indicators will be illustrated with graphic examples. Fig. 1 shows the model of graduation and dropout of a four-year degree with \(T_a = 0.2 \) and \(T_g = 0.7 \). Table I summarizes the annual rate of dropout and graduation.

![Annual dropout and graduation](image_url)

Figure 1. Dropout and graduation model for a four years degree \(T_a=0.2, \ T_g=0.7, \ t_a=0.022, \ t_g=0 \) and \(y=0.5 \).

In the example \(T_g^{(4)}=T_g^{(5)} \), due to the fact of being \(y=0.5 \), where \(T_g^{(5)} \) is the initial term of the decreasing sequence. This model has been adopted for greater generality, since any other ratio between these first two terms may be considered.
Table 1. Numeric values for the example of Fig. 1

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35%</td>
<td>35%</td>
<td>6.4%</td>
<td>1.2%</td>
<td>0.21%</td>
</tr>
<tr>
<td>Dropout</td>
<td>11.9%</td>
<td>5.5%</td>
<td>2.6%</td>
<td>1.2%</td>
<td>0.55%</td>
<td>0.26%</td>
<td>0.12%</td>
<td>0.055%</td>
</tr>
</tbody>
</table>

2.3.4 Simple parametric model.

In general, it is desirable to have small rates for the late graduation \(t_g \) or late dropout \(t_a \) because they represent the excessive and unnecessary permanence of students in the program. The different components of graduation and dropout, whose sum must be equal to unity, are illustrated in Fig. 2:

\[
(T_g + t_g) + (T_a + t_a) = 1
\] \hspace{1cm} (6)

Due to equation (6), only three of the four terms can be considered independent variables, because the fourth one is determined by such relation. For convenience, the following three independent variables are proposed for the model:

\[
\tau_g = \frac{t_g}{T_g}; \quad \tau_a = \frac{t_a}{T_a}; \quad k = \frac{\tau_g}{\tau_a}
\] \hspace{1cm} (7)

Under normal conditions, both \(\tau_g \) and \(\tau_a \) should be small (compared to the unit), which means that most of the students achieve graduation or leave the studies during the first years. This will produce some simplification in the proposed model.

2.4. Duration of studies for graduated students \((D_g) \) and for those leaving the program \((D_a) \)

The mean duration of studies for graduates can be determined as the weighted average of the number of years used by students to achieve graduation. Taking into account the annual graduation rate represented by (4), the duration of the studies is:

\[
D_g = \frac{\sum_{j \geq N_g} t_g^{(j)} j}{\sum_{j \geq N_g} t_g^{(j)}}
\] \hspace{1cm} (8)
Fig. 3 presents the value of \((D_g-N_y)\), which means the excess of duration of studies respect to \(N_y\) as a function of the parameter \(\tau_g\) for different values of \(\gamma\) under the statistical geometric model previously described. The details of the mathematical formulation can be found in the appendix section A2. It can be observed that the mean duration is approximately half year more than \(N_y\) for moderately small values of \(\tau_g\).

For the students that finally leave the program, the mean number of years of permanence can be determined as the weighted average of the number of years in which the students are enrolled before leaving. Taking into account the annual dropout rate represented by (1), the duration of the studies is:

\[
D_u = \sum_{i \geq 1} \frac{\tau^{(i)}_a i}{\sum_{i \geq 1} T^{(i)}_a}
\]

(9)

Fig. 4 illustrates the behavior of \(D_a\) as a function of the parameter \(\tau_a\) for degrees of 3, 4, 5 and 6 years. The details of the formulation are included in appendix section A2. An increasing trend can be observed (as expected) with the number of years and with \(\tau_a\), together with an almost linear behavior respect to this last parameter.
2.5. Number of students enrolled in the program (N_s)

The number of students present in the studies is the key factor for measuring the workload of the faculty staff. If the graduation and dropout rates are considered stationary as well as the number of students of new income, the number of students that are enrolled in the program of studies at any moment will be also stationary. It can be shown that under these conditions the global number of students has two components:

- Those students belonging to the group that graduate. This group represents a percentage of $T_g + t_g$ of the N incoming students and their average duration in the program is D_g.

- Those students belonging to the group that leave the program without graduating after an average of D_a years. This group represents a percentage of $T_a + t_a$ of the incoming N students.

The number of students can be calculated as the sum of both components, as represented in Fig. 5 by the shadowed areas.
\[N_s = N(T_g + t_g)D_g + N(T_a + t_a)D_a \] \hspace{2cm} (10)

Figure 5. Scheme of the flux of students enrolled in the program of studies and their mean permanence in the studies

Figure 6 shows the dependence of the number of students enrolled (normalized by \(N \)) with the dropout rate for different values of the graduation rate when the rest of the independent variables have the reference values \((N_y=4, y=0.5, k=1)\). It can be observed that for the ideal case \(T_a=0\) and \(T_g=100\%\) the number of students enrolled is 4.5 times \(N \), in other words, \(N_s=(N_y+0.5)N \).

Figure 6. Number of students enrolled for each new incoming student for \(N_y=4, y=0.5, \) and \(k=1 \) for different values of \(T_g \) as a function of \(T_a \).

2.6. Efficiency rate \((T_e)\) and number of credits inscribed \((C)\)

The efficiency rate is defined by Spanish regulations (Spanish regulation RD 1393, 2007) as the ratio between the number of credits in which a group of graduate students have succeeded and the number of credits enrolled by the same group of students along the years required by them for achieving graduation. The
una cohorte de nuevos ingresos y finalmente graduados. Una vez determinado el número de estudiantes matriculados, la eficiencia es útil para determinar el total de créditos inscritos por todos los estudiantes en el programa. La hipótesis consiste en asumir que un estudiante promedio alcanza la graduación tras inscribirse \(N_c / T_e \) créditos en \(D_g \) años para completar el grado con los \(N_c \) créditos necesarios para la graduación. Así, cada año un estudiante promedio del grupo que finalmente alcanza la graduación (parte superior de la Figura 5) será matriculado en \(N_c / (T_e D_g) \) créditos. Se debe hacer una suposición para los estudiantes del grupo que dejarán de estudiar sin graduarse. En ausencia de registros específicos, se asume que el total de créditos inscritos cada año es el mismo para los estudiantes promedio de ambos grupos. Con esta suposición, el número de créditos inscritos durante un año académico por todos los estudiantes matriculados en el programa es:

\[
C = N_r \frac{N_c}{T_e D_g} = N \frac{N_c}{T_e} \left[(T_g + t_g) + (T_a + t_a) \frac{D_a}{D_g} \right]
\]

(11)

Es interesante normalizar el resultado anterior para definir el número de créditos inscritos relacionado con el número de estudiantes de nuevo ingreso y el número de créditos del grado para el caso de eficiencia igual a unidad. La siguiente relación se refiere como el número de créditos normalizado \(C_N \):

\[
C_N = \frac{C T_e}{N N_c} = \left[T_g (1 + \tau_g) + T_a (1 + \tau_a) \frac{D_a}{D_g} \right]
\]

(12)

Fig. 7 muestra el \(C_N \) ratio para el mismo ejemplo de Fig. 6. Esta figura muestra una fuerte dependencia con la tasa de abandono con un comportamiento casi lineal.

![Graph of CN](image_url)

Figura 7. Número normalizado de créditos inscritos para \(N_y = 4 \), \(y = 0.5 \), y \(k = 1 \) para diferentes valores de \(T_g \) como función de \(T_a \).

En los ejemplos anteriores analizados, los parámetros \(k \) y \(y \) se han establecido como valores constantes. En orden confirmar que la dependencia con la tasa de abandono es predominante, se ha desarrollado un estudio paramétrico exhaustivo utilizando hasta 10,000 casos aleatorios. Para cada uno de estos casos, resultados
values have been assigned to the independent variables characterizing the mathematical model. Uniform distributions have been considered for the individual generation of random values with the limits shown in Table 2. Besides, a reference value is presented for each parameter for comparison purposes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum Value</th>
<th>Reference Value</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_y</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>y</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>k</td>
<td>0.25</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>T_a</td>
<td>0%</td>
<td>30%</td>
<td>60%</td>
</tr>
<tr>
<td>T_g</td>
<td>40%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>$T_a + T_g$</td>
<td>0%</td>
<td>---</td>
<td>30%</td>
</tr>
</tbody>
</table>

Table 2. Limits and reference values for the parametric study.

Fig. 8 presents the results of the normalized number of credits inscribed in the parametric study. Each dot in the figure represents one of the 10,000 cases considered. As it can be seen in Fig. 8, for zero dropout rate the normalized number of credits enrolled tends to one. An almost linear decreasing behavior depending on T_a can be observed without a very strong dependence on the rest of the parameters. A linear regression of the form $(1 - 0.68 \cdot T_a)$ has been found for best fitting the collection of data points. This linear regression has been also plotted for comparison, showing a high degree of correlation between the randomly selected cases with this linear estimation. As a consequence, the linear estimation is a reasonable criterion for the prediction of the credits inscribed.

![Figure 8](image)

Figure 8. Normalized number of credits inscribed for a number of 10000 cases randomly selected.

3. PARAMETERS DERIVED FROM REGULATIONS

The internal regulations of universities can define some parameters involving the organization and planning of teaching which are devoted to ensure the quality of the educational process at the same time that the organization scheme is economically feasible. Two parameters will be included here in this group: the number of contact hours per ECTS for students and the average size of groups. On the other hand, labor law establishes the number of teaching hours per
year that can be assigned to the faculty staff for regular tuition in classroom, labs, etc.

3.1. Contact hours per ECTS (H)

Each ECTS involves between 25 and 30 hours of work by students. These hours include both hours developed in classroom or laboratory under the direct intervention of teachers, as well as the autonomous activity by the student. As already pointed out, in annual average values students take 60 credits a year, representing between 1,500 and 1,800 hours of academic activity. The total amount of contact hours may vary depending on the program or the year/level, but it can be established in margins between 25% and 40% of the total hours. This parameter must be established by the universities.

3.2. Faculty hours (F) and average size of groups (ASG)

The average size of groups is traditionally defined as the ratio between the credits taught by the faculty. Since in the EHEA ECTS credits are reserved exclusively to measure the workload of students, the definition must be adapted to the new context. Instead of talking of credits we will compute hours. As an example, consider a course or class with 45 students enrolled that must attend 60 contact hours at classroom or labs. The activity is distributed into 30 hours in a classroom where the 45 students attend simultaneously and 30 more lab hours where only 15 students attend at the same time. So the students are divided into 3 lab groups. The number of “enrolled hours” by students is 45x60=2700, while the number of hours taught by faculty is 30x1+30x3=120. The average size of groups for that course is 2700/120=22.5, which represents the average group considering classroom and lab hours.

The contact hours received by students is the number of ECTS enrolled times \(H \), which can be compared to the number of lecture hours by the faculty. The ASG is then defined as follows:

\[
ASG = \frac{CH}{F}
\]

(13)

where \(F \) is the total number of hours taught by the faculty. Although there are other kind of working hours (tutoring, lesson preparation, etc.), the number of hours considered here is only the co-called ‘contact’ hours because they determine staffing needs. If the \(ASG \) is established by regulations, the necessary faculty hours is determined by simply inverting (13):

\[
F = \frac{CH}{ASG} = N \frac{N_c}{T_c} \frac{H}{ASG} \left[T_g (1 + \tau_g) + T_a (1 + \tau_a) \frac{D_a}{D_g} \right]
\]

(14)

Actually, the ratio \(ASG/H \) can be regulated by the university in order to establish the proportionality between credits inscribed and staffing needs in contact hours.

If the linear approximation is assumed, the faculty hours are:

\[
F = N \frac{N_c}{T_c} \frac{H}{ASG} \left[1 - 0.68 T_a \right]
\]

(15)

The above expression is extremely simple and useful for the human-resource planning of faculties in universities. The number of required teaching hours can be set depending on the recorded values or extracted statistics (\(N, N_c, Ta \)) and, secondly, on the values that the university can set as targets to be met (\(T_c, H/ASG \)).

3.3. Annual teaching capacity of the faculty (\(C_f \)), number of faculty staff (\(N_f \)) and ratio students/teachers (R)

The number of hours \(C_f \) that educators must teach in activities as those reserved for contact hours is derived from regulations. In this model, the reference is the full-time activity for both students and faculty. The dimension of the faculty staff derived from the model must be considered a full-time equivalent. The total number of faculty individuals is directly derived from the hours of contact activity and the annual capacity:

\[
N_f = \frac{P}{C_f} \approx N \frac{N_c}{C_f} \frac{H}{ASG} \left[1 - 0.68 T_a \right]
\]

(16)

The ratio between the number of students enrolled and the number of faculty individuals is:
The ratio \(RSF \) has been written as the product of three factors. The first one \((C_{f}/N_{c}) \) usually depends on national regulations. As an example, according to Spanish regulations, the “Grado” degree consists of \(N_{c}=240 \) ECTS while the number of hours assigned to full-time faculty is 240 per year. The second factor \((T_{e}D_{g}) \) is related to academic features of the degree, but under normal circumstances it is close to the number of years of the degree. The last one \((ASG/H) \) contains two key parameters that the university can control to ensure the quality and financial feasibility of the higher education.

Fig. 9 presents, as an example, the ratio \(R \) in terms of the average size of groups \((ASG) \) and the contact hours per ECTS \((H) \) for a four year degree, assuming \(k=1, \ y=0.5, \ T_{a}+T_{g}=90\%, \ T_{e}=90\%, \) and \((C_{f}/N_{c})=1. \)

Figure 9. Students/Teachers ratio (R) Ratio for a four year degree with \(k=1, \ y=0.5, \ T_{a}+T_{g}=90\%, \ T_{e}=90\%, \) and \((C_{f}/N_{c})=1. \)

4. CONCLUSIONS

A mathematical model has been presented which allows the prediction of the dimension of faculty staff necessary for the development of a study program or degree in higher education. The model starts with a small number of input parameters taken from statistical records, according to the official definition of the indicators used in the EHEA and some parameters derived from university, regional or national regulations. Using some simplifications which are based on experience, an explicit formulation has been developed which can be useful for the bodies of government of the universities. The formulae include some parameters which depend on the organization and planning of teaching, so the process can be controlled to ensure a compromise between the criteria related to the quality of education and the feasibility of the solution from the financial point of view. The exhaustive parametric study made by randomly varying some parameters of the model without significant variation of the final result allows the corroboration of the robustness of the model.

ACKNOWLEDGMENT

This work has been supported by the University of Vigo through the Office of the Commissioner for New Projects.
REFERENCES

http://www.uv.es/RELIEVE/v12n2/RELIEVEv12n2_1.htm

A.1 Geometric probability distributions for graduation and dropout rates.

The discrete probability distribution of the geometric type is based on only one single parameter and involves decreasing probability for increasing the number of years. The probability density of the geometric type (Bromwich, 2005) (Weisstein) is determined by the probability that the event occurs at time \(i \):

\[
P(i) = p (1 - p)^i \quad i \geq 0
\]

(18)

where \(p \) is the characteristic parameter of the distribution. The mean value \(\mu \) is directly related to the parameter \(p \):

\[
\mu = \frac{1 - p}{p} = \frac{1}{p} - 1
\]

(19)

The proposed distribution determines the probability that the event occurs at time \(i \) or before:

\[
P(\leq i) = \sum_{j=0}^{i} p (1 - p)^j = 1 - (1 - p)^{i+1}
\]

(20)

The above equation is derived from the properties of the geometric progression series (Bromwich, 2005).

The parameter of the statistical distribution \(a_t \) used for dropout modeling can be obtained from (3) by taking into account (20):

\[
T_a = (T_a + t_a) \sum_{i=0}^{N_i-2} a_i(T_a + t_a) = \sum_{i=0}^{N_i-2} p_a (1 - p_a)^i = (T_a + t_a) \left[1 - (1 - p_a)^{N_i-1} \right]
\]

(21)

Then, the characteristic parameter \(p_a \) of the geometric dropout distribution can be obtained as:

\[
p_a = 1 - (N_i-1) \frac{T_a}{T_a + t_a} = 1 - (N_i-1) \frac{\tau_a}{1 + \tau_a}
\]

(22)

The mean value is given by (19):

\[
\alpha = \mu_a = \frac{1}{p_a} - 1 = \frac{1}{1 - (N_i-1) \frac{\tau_a}{1 + \tau_a}} - 1
\]

(23)

For the graduation rate the corresponding parameter \(p_g \), for characterizing the statistical distribution \(g_y \), when it fits the geometric type can be deducted from (4) by considering the graduation at year \((N_y+1)\):

\[
T_g \{N_y,1\} = (yT_g + t_g)g_0 \Rightarrow yT_g = [yT_g + t_g]p_g
\]

(24)

From above equation the \(p_g \) can be solved, and then the mean value of the distribution \(\gamma \) can be obtained too:

\[
p_g = \frac{yT_g}{yT_g + t_g} = \frac{y}{y + \tau_g}
\]

(25)
A.2 Duration of studies

The years of permanence in studies for those students leaving the degree without success can be deducted by introducing the annual dropout rates (1) into (9):

\[D_a = \frac{\sum i \cdot T_a^{(i)}}{\sum T_a^{(i)}} = \frac{\sum (i+1) \cdot T_a^{(i+1)}}{\sum T_a^{(i+1)}} = \frac{(T_a + t_a)\sum (i+1) \cdot a_i}{(T_a + t_a)\sum a_i} \]

(27)

After removing the common factor \((T_a + t_a)\) and by making use of the properties of the statistical distribution given by (2), it follows:

\[D_a = \frac{\sum (i+1) \cdot a_i}{\sum a_i} = \frac{\sum i \cdot a_i + \sum a_i}{\sum a_i} = \frac{\alpha + 1}{1} = \alpha + 1 \]

(28)

The duration of the graduate studies may be obtained similarly, although the deduction is more laborious. The introduction of the graduation rates given by equation (4) in the definition (8) allows writing:

\[D_g = \frac{\sum j \cdot T_g^{(j)}}{\sum T_g^{(j)}} = \frac{N_y(1 - y)T_g + \left(yT_g + t_g\right)\sum (N_y + 1 + j) \cdot g_i}{(1 - y)T_g + \left(yT_g + t_g\right)\sum g_i} \]

(29)

The numerator can be decomposed as follows:

\[D_g = \frac{N_y(1 - y)T_g + \left(yT_g + t_g\right)\sum g_i + \sum j \cdot g_i}{(1 - y)T_g + \left(yT_g + t_g\right)\sum g_i} \]

(30)

Using now the properties of the statistical distribution \(g_i\) given by equation (5), it follows:

\[D_g = \frac{N_y(1 - y)T_g + \left(yT_g + t_g\right)(N_y + 1 + \gamma)}{(1 - y)T_g + \left(yT_g + t_g\right)} = \frac{N_y(T_g + t_g) + \left(yT_g + t_g\right)(1 + \gamma)}{T_g + t_g} \]

(31)
The above expression can be written more simply in terms of the coefficient τ_g solving the excess of studies duration over N_y:

$$D_g - N_y = \frac{(y + \tau_g)(1 + \gamma)}{1 + \tau_g} \quad (32)$$

Particularizing the results of equations (28) and (32) for geometric distributions by entering values α and γ from expressions (23) and (26), respectively, it follows:

$$D_a = \alpha + 1 = \frac{1}{p_a} = \frac{1}{1 - (x_{y-1})^{\alpha}} \quad (33)$$

$$D_g - N_y = \frac{(y + \tau_g)(1 + \gamma)}{1 + \tau_g} = \frac{(y + \tau_g)^2}{y \cdot (1 + \tau_g)} \quad (34)$$

Figures 4 and 3 provide a graphic representation of these last two expressions.